
Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Essential
Performance

Advanced

Performance

Distributed

Performance

Efficient
Performance

Intel® Parallel Studio XE

Hans Pabst, Developer Product Division

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Future Challenges in Tracking and
Trigger Concepts

2nd International Workshop, July 8th

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Motivation: Performance

 “Parallel hardware needs
 parallel programming”

3

P
e

rf
o

rm
a

n
c

e

GHz Era

Time

Multicore Era Manycore Era

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Many Integrated Core (MIC)
Co-Processor Architecture

4

Knights Ferry Software Development Platform

• Up to 32 cores, 128 threads

• 512-bit SIMD support

• Fully coherent cache

• Up to 2 GB GDDR5 memory

• Latest Intel SW developer products

First Intel® MIC product

• Codenamed “Knights Corner”

• Planned for production on Intel’s 22 nm 3D Tri-Gate
transistor technology

VECTOR
IA CORE

INTERPROCESSOR NETWORK

INTERPROCESSOR NETWORK
F
IX

E
D

 F
U

N
C
T
IO

N
 L

O
G

IC

M
E
M

O
R
Y
 a

n
d
 I

/O
 I

N
T
E
R
F
A
C
E
S

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

VECTOR
IA CORE

COHERENT
CACHE

…

…

…

…

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

COHERENT
CACHE

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

One source base, tuned to many targets

5

Multicore

Source

Many-core Cluster

Compilers
Libraries

Parallel Models

Multicore
CPU

Multicore
CPU

Intel® MIC
Architecture
Co-Processor

Multicore
Cluster

Multicore and
Many-core Cluster

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Programming Models and Libraries

6

Fixed
Function
Libraries

Established
Standards

Research and
Exploration

MPI
Intel®

Concurrent
Collections

OpenMP*
Intel®
Cluster
OpenMP

Intel® Cilk
Plus

Intel® Parallel
Building Blocks (PBB)

Intel®

Threading
Building

Blocks (TBB)

Intel® Array
Building

Blocks (ArBB)

Intel® Math
Kernel

Library (MKL)

Intel®
Integrated

Performance
Primitives

(IPP)

Intel®
OpenCL

SDK

Software
Transactional

Memory

There are many parallel programming
models for C, C++ and Fortran.

We support them all.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Shown steps enable to scale forward
to many-core co-processors.

Performance Optimization Steps

7

The order of the steps is suggested to be based on a performance analysis.

Baseline
Recompilation of
the existing code.

Intel® Compiler
- Performance
 comparison with
 other compilers.

Intel® Libraries
Identify fixed
functionality and
employ optimized
code, threads, and
(with Intel® MKL)
multiple nodes.

Intel® IPP
- Multi-media
- etc.

Intel® MKL
- Statistics (VSL)
- BLAS
- etc.

Multithreading
Achieve scalability
across multiple
cores, sockets, and
nodes.

Intel® Compiler
- Auto/guided par.
- OpenMP*

Intel® Parallel
Building Blocks
- Intel TBB
- Intel Cilk Plus
- Intel ArBB

Intel® Cluster
Studio
- Cluster tools
- MPI

Vectorization
Make use of SIMD
extensions, e.g.
Intel® AVX.

Intel® Compiler
- Optimization hints
- #pragma simd

Intel® Cilk Plus
- Array notation
- Elemental fn.

Intel® ArBB

- Unified model for
 SIMD and threads

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Parallel Studio XE

Phase Tool Usage Benefit

Compilation
Debugging

Intel®
Composer
XE

C/C++ and Fortran
Compiler, Performance
Libraries and parallel
programming models

Strong step towards
higher performance (ad-
hoc and in the future),
additional robustness and
safety

Verification
Correctness

Intel®
Inspector
XE

Debugging (memory
access and thread usage)
for better code /
application quality

Higher productivity, early
or continuous quality
assurance (GUI+CLI)

Analysis
Tuning

Intel®
VTuneTM
Amplifier
XE

Profiler to inspect
hardware events
(counter), scalability etc.

Avoids work based on
guesses, combines ease
of use with deep insight
(GUI+CLI)

8

Powerful compilers. Verification and performance analysis
tools supporting continuous integration.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Compiler

Intel® C/C++ Compiler Version 12
Intel® Fortran Compiler Version 12

9

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Auto vect. hints (#pragma ivdep, …)

Programmer Control

Ease of use Fully automatic vectorization

SIMD Vectorization

10

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Parallel Building Blocks

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Auto vect. hints (#pragma ivdep, …)

Programmer Control

Ease of use Fully automatic vectorization

SIMD Vectorization

11

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Basic Vectorization – Switches [1]

{L&M} -x<extension> {W}: /Qx<extension>
• Targeting Intel® processors - specific optimizations for Intel® processors
• Compiler will try to make use of all instruction set extensions up to and

including <extension>; for Intel® processors only!
• Processor-check added to main-program
• Application will not start (will display message), in case feature is not

available

{L&M}: -m<extension> {W}: /arch:<extension>
• No Intel processor check; does not perform Intel-specific optimizations
• Application is optimized for and will run on both Intel and non-Intel

processors
• Missing check can cause application to fail in case extension not available

{L&M}: -ax<extension> {W}: /Qax<extension>
• Multiple code paths – a ‘baseline’ and ‘optimized, processor-specific’ path(s)
• Optimized code path for Intel® processors defined by <extension>
• Baseline code path defaults to –msse2 (Windows: /arch:sse2);

can be modified by –m or –x (/Qx or /arch) switches

12

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Basic Vectorization – Switches [2]

The default is –msse2 (Windows: /arch:sse2)

• Activated implicitly for –O2 or higher

• Implies the need for a target processor with Intel® SSE2

• Use –mia32 (/arch:ia32) for 32-bit processors without SSE2
(e.g. Intel® Pentium™ 3) to adjust baseline code path

Special switch –xHost (Windows: /QxHost)

• Compiler checks host processor and makes use of latest instruction
set extension available

• Avoid for builds being executed on multiple, unknown platforms

Multiple extensions can be used in combination:
–ax<ext1>,<ext2> (Windows: /Qax<ext1>,<ext2>)

• Can result in more than 2 code paths (incl. baseline code path)

• Use –mia32 (/arch:ia32) for 32-bit processors without SSE2
(e.g. Intel® Pentium™ 3) to adjust baseline code path

13

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization – More Switches/Directives

Disable vectorization

• Globally via switch: {L&M}: -no-vec {W}: /Qvec-

• For a single loop: directive novector

– Disabling vectorization here means not using packed SSE/AVX instructions.
The compiler still might make use of the corresponding instruction set
extensions.

Enforcing vectorization for a loop (overwrite compiler heuristics)
#pragma vector always

• will enforce vectorization even if the compiler thinks it is not
profitable to do so (e.g due to non-unit strides or alignment issues)

• Will not enforce vectorization if the compiler fails to recognize this as
a semantically correct transformation

• Using directive #pragma vector always assert will print error

message in case the loop cannot be vectorized and will abort
compilation

14

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Report

• Provides details on vectorization success & failure
– L&M: -vec-report<n>, n=0,1,2,3,4,5

– W: /Qvec-report<n>, n=0,1,2,3,4,5

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

35: subroutine fd(y)

36: integer :: i

37: real, dimension(10), intent(inout) :: y

38: do i=2,10

39: y(i) = y(i-1) + 1

40: end do

41: end subroutine fd

15

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Diagnostic Level of Vectorization Switch
L&M: -vec-report<N> W: /Qvec-report<N>

Note:
– In case inter-procedural optimization (-ipo or /Qipo) is

activated and compilation and linking are separate
compiler invocations, the switch needs to be added to the
link step

N Diagnostic Messages

0 No diagnostic messages; same as not using switch and thus default

1 Report about vectorized loops– default if switch is used but N is
missing

2 Report about vectorized loops and non-vectorized loops

3 Same as N=2 but add add information on assumed and proven
dependencies

4 Report about non-vectorized loops

5 Same as N=4 but add detail on why vectorization failed

16

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Application

Source
C/C++/Fortran

Application
Binary
+ Opt Reports

Identify
hotspots,
problems

Performance

Tools

Application
Source +
Hotspots

Compiler
in advice-

mode

Advice
messages

Modified
Application
Source

Compiler

(extra
options)

Improved
Application
Binary

GAP

Compiler as a Tool

Simplifies programmer effort in application tuning

17

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

void mul(NetEnv* ne, Vector*

rslt

 Vector* den, Vector* flux1,

 Vector* flux2, Vector* num

{

 float *r, *d, *n, *s1, *s2;

 int i;

 r=rslt->data;

 d=den->data;

 n=num->data;

 s1=flux1->data;

 s2=flux2->data;

 for (i = 0; i < ne->len; ++i)

 r[i] = s1[i]*s2[i] +

n[i]*d[i];

}

GAP Messages (simplified):

1. Use a local variable to store
the upper-bound of loop at
line 29 (variable: ne->len) if
the upper-bound does not
change during execution of
the loop

2. Use “#pragma ivdep” to help
vectorize the loop at line 29,
if these arrays in the loop do
not have cross-iteration
dependencies: r, s1, s2, n, d

-> Upon recompilation, the loop
will be vectorized

Vectorization Example

18

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-Mandated Vectorization

User-mandated vectorization is based on a new SIMD Directive

• The SIMD directive provides additional information to compiler to enable
vectorization of loops (at this time only inner loop)

• Supplements automatic vectorization but differently to what traditional
directives like IVDEP, VECTOR ALWAYS do, the SIMD directive is more a
command than a hint or an assertion: The compiler heuristics are completely
overwritten as long as a clear logical fault is not being introduced

Relationship similar to OpenMP versus automatic parallelization:

19

User Mandated Vectorization OpenMP

Pure Automatic Vectorization Automatic Parallelization

19

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Directive Notation

C/C++: #pragma simd [clause [,clause] …]

Fortran: !DIR$ SIMD [clause [,clause] …]

Without any additional clause, the directive enforces
vectorization of the (innermost) loop

Example:

void add_fl(float* a, float* b, float* c, float* d, float* e, int n)

{

 #pragma simd

 for (int i=0; i<n; i++)

 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Without the SIMD directive, vectorization will fail (too many pointer references to do a run-time overlap-check).

20

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Parallel
Building Blocks

Intel Cilk Plus

Intel TBB

Intel ArBB

21

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Parallel Building Blocks (Intel PBB)

• Programming models in Intel PBB
– Composable, choice to mix and match

– Portable, and performance portable

– Productive, and safe

• Parallel patterns
A parallel pattern is a commonly occurring
combination of task distribution and data access.

1. A small number of patterns can support a
wide range of applications.

2. Supporting “good” patterns directly leads to
higher productivity.

3. In addition, a useful subset of “good” patterns are
structured and deterministic.

22

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Superscalar

sequence

• Speculative

selection

• Map

• Scan and Recurrence

• Pipeline

• Reduce

• Pack &

Expand

• Nest

• Search &

 Match

• Stencil

• Partition

• Gather/scatter

Parallel Patterns

23

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallel Patterns in Intel PBB

• Cilk Plus
– cilk_spawn: nesting (fork-join)
– Hyperobjects: reduction
– cilk_for, elemental functions: map
– Array notation: scatter, gather

• Threading Building Blocks
– parallel_invoke, task-graph: nesting (fork-join)
– parallel_for, parallel_foreach: map
– parallel_do: workpile (map + incr. task addition)
– parallel_reduce, parallel_scan: reduce, scan
– parallel_pipeline: pipeline

• Array Building Blocks
– Elemental functions: map
– Collective operations: reduce, scan
– Permutation operations: pack, scatter, gather

24

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

Elemental Functions and Array Sections

Intel Cilk Plus, est. 2010

52

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Elemental Functions and Array Sections

• Elemental functions (“kernels”)

– Properties apply to guarantee vectorization

• Array notation (sections/slices)

– [start:size], or

– [start:size:stride]

53

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Element-wise Addition

__declspec(vector) void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(const int* begin, const int* begin2,
 std::size_t size, int* out)
{
 cilk_for (std::size_t i = 0; i < size; ++i) {
 kernel(out[i], begin[i], begin2[i]);
 }
}

void sum2(const int* begin, const int* begin2,
 std::size_t size, int* out)
{
 kernel(out[0:size], begin[0:size], begin2[0:size]);
}

54

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Array
Building Blocks

Intel ArBB

55

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

ArBB Overview

56

• Embedded Language

• Dynamic Compiler C++ Library

• Containers and parallel operations

• Implicit use of SIMD and threads
Vector-parallel

• Scalable across diff. SIMD widths

• Scalable across multiple cores
Scalable

• Independent of #cores utilized

• No sync. objects, no data races
Deterministic

• Separate memory space (data)

• No pointers, by-value semantic
Safe

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Programming Interfaces

57

C++ API

Intel® ArBB
Virtual Machine
(VM) API (C89)

Implementation

Other
language
binding

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Development Cycle and Tools

58

C++ Compiler

Executable
File

Standard
Debugger

(Microsoft, GNU)

Intel® ArBB Library

Emulation
Mode

ArBB Source

Execution

Development,
Debugging

Perf. Analysis,
Release

Intel VTune
Amplifier, OProfile,

scoped_timer

JIT Compiler
|

Target HW

Roadmap: “emulation mode” and native code execution will be aligned (same precision, debugging native code).

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector Processing and Elemental Functions

59

Vector Processing Elemental Processing

f

void f(dense<f32>& result,
 dense<f32> a, dense<f32> b)
{
 result = a * b;
}

dense<f32> result, a, b;
call(f)(result, a, b);

void e(f32& result, f32 a, f32 b)
{
 result = a * b;
}

… e e e e e e

f

a = add<f32>(r, c);

a = map(, b, c) e

"Kernel"

Elemental processing is naturally embedded into a more general vector processing context allowing e.g. scatter etc.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

ArBB Function?

void function(signature)

• Void Multiple results possible
 - Via argument list

• Signature Outputs/in-outs
 - By “non-const reference”
 Inputs
 - By “const reference”, or
 - By-value

• Types Intel ArBB Types

 arbb::call()

60

In a narrow sense an “ArBB function” does not exist since it is regular C++ code.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

JIT Compiler and Code Generation

61

Function Pointer

Captures or returns
 previously captured

closure

Executes closure
returned from
call()

call(my_function)(arg1, arg2);

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

JIT Compiler and Code Generation

62

Function Pointer

Captures or returns
 previously captured

closure

Executes closure
returned from
call()

call(my_function)(arg1, arg2);

“As-if” exec.

IR gen.

JIT

Native code exec.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scalar Types

63

Type Description C++

f32, f64 32/64 bit floating point float, double

i8, i16, i32, i64 8/16/32 bit integer (signed) signed char,
short, int

u8, u16, u32, u64 8/16/32 bit integer (unsigned) unsigned char,
unsigned short,
unsigned int

boolean Boolean value (true/false) bool

usize, isize Index type size_t (ssize_t)

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Operations

64

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data Management

65

// one-dimensional array with double-precision numbers
dense<f64> signal(

 "{ 0.3, 5.3, -2.4, 3.1 }");

// two-dimensional array with signed integers (byte)
dense<i8,2> greyscale_image(

 "{ { 0, 12, 34, 21 }, { 45, 31, 21, -74 },

 { 81, 52, 22, 15 } }");

Segregated storage and memory management
• Transparent on remote execution

• No pointers, logically “by value”

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Data Management

66

// irregular array of signed integers
nested<i32> graph_edges(

 "{ { 0, 1, 3 }, { 3, 5 }, { 1, 2, 8, 9 } }");

// one-dimensional array of structured type (user-defined)
struct particle { f64 m; i8 f; i32 c; };

dense<particle> state(

 "{ { 0.3, 1, 5 }, { 0.5, 2, 2096 },

 { 3.2, 56, 7 } }");

• Type of container elements
– Scalar type (Intel ArBB)

– Collection of scalar types (structured, heterogeneous)

– Nested structure of the above types

• “Arrays of Structures” (AoS) are stored as
“Structures of Arrays” (SoA) internally

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Mandelbrot

67

int max_count = 4711;
void mandel(i32& d, std::complex<f32> c) {
 i32 i;
 std::complex<f32> z = 0.0f;
 _for (i = 0, i < max_count, i++) {
 _if (abs(z) >= 2.0f) {
 _break;
 } _end_if;
 z = z * z + c;
 } _end_for;
 d = i;
}

void doit(dense<i32,2>& d, const dense<std::complex<f32>,2>& c)
{
 map(mandel)(d, c);
}

bind(pos, c_pos, cols, rows);
bind(dest, c_dest, cols, rows);
call(doit)(dest, pos);

Color Legend:

•ArBB State (Type)
•ArBB Behavior

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Intel® ArBB operators: separately written, but fused code
across call boundaries (inlining, despite of modularization)
– Higher arithmetic intensity per task

– Higher memory locality

– Less scheduling overhead

– Less synchronization

High-Level Optimizations

69

Barrier Barrier Barrier Barrier

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Matrix-Vector Multiplication

How to do it in C++?

for (int j = 0; j < n; ++j) {

 result[j] = matrix[j * n] * vector[0];

 for (int i = 1; i < m; ++i) {

 result[j] += matrix[j * n + i]

 * vector[i];

 }

}

70

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Matrix-Vector Multiplication

It is often possible to eliminate loops entirely.

Express what to do, instead of how to do it.

usize nrows = matrix.num_rows();

result = add_reduce(matrix

 * repeat_row(vector, nrows));

71

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Matrix-Vector Multiplication

… But loops are just fine in cases where the

 loop body contains enough parallel work

_for (usize i = 0, i < nrows, ++i) {

 result[i] = add_reduce(matrix.row(i)

 * vector);

} _end_for;

72

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Query Value Locations

void findval(dense<usize>& result,

 const dense<f32> in,

 f32 value)

{

 dense<boolean> hits = in == value;

 dense<usize> pos = indices(0, in.length());

 result = pack(pos, hits);

}

73

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks

•Download Intel ArBB and try it!
http://intel.com/go/arbb/

•Documentation, articles, and user forum
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/

http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/

http://software.intel.com/en-us/forums/intel-array-building-blocks/

74

http://software.intel.com/en-us/articles/optimization-notice/
http://intel.com/go/arbb/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-documentation/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://software.intel.com/en-us/forums/intel-array-building-blocks/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Questions?

75

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 76

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Notice

77

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel and non-Intel microprocessors (for example
SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain
compiler options for Intel compilers, including some that are not specific to Intel micro-architecture, are
reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the
instruction sets and specific microprocessors they implicate, please refer to the “Intel Compiler User and
Reference Guides” under “Compiler Options." Many library routines that are part of Intel compiler
products are more highly optimized for Intel microprocessors than for other microprocessors. While the
compilers and libraries in Intel compiler products offer optimizations for both Intel and Intel-compatible
microprocessors, depending on the options you select, your code and other factors, you likely will get
extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the
same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your business
by striving to offer the best performance of any compiler or library; please let us know if you find we do
not.

Notice revision #20110307

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer

78

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/products
http://intel.com/software/products

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallel Patterns

Backup Slides

79

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

(Serial) Sequence

f

g

q

p

B = f(A);

C = g(B);

E = p(C);

F = q(A);

A serial sequence is executed in
the exact order given:

80

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Superscalar Sequence (Task Graph)

f

g

f h

g

r

q p

B = f(A);

C = g(B);

E = f(C);

F = h(C);

G = g(E,F);

P = p(B);

Q = q(B);

R = r(G,P,Q);

• However, tasks only need to be
ordered by data dependencies

• Depends on limiting scope of data
dependencies

• Variants: fork-join, general DAG

Developer writes “serial” code:

81

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Map (Embarrassing Parallelism, SPMD)

• Map replicates a function
over every element of an
index set (which may be
abstract or associated with
the elements of an array).

• This replaces one specific
usage of iteration in serial
programs: processing every
element of a collection with
an independent operation.

A = map(f,B);

f f f f

Examples: gamma correction
and thresholding in images;
color space conversions; Monte
Carlo sampling; ray tracing.

82

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reduction

• Reduce combines every
element in a collection into
one element using an
associative operator.

• For example, reduce can be
used to find the sum or
maximum of an array.

• There are some variants
that arise from combination
with partition and search

b = reduce(f,B);
f f

f

Examples: averaging of Monte Carlo
samples; convergence testing;
image comparison metrics; sub-
task in matrix operations.

83

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Partition (Geometric Decomposition)

• Partition breaks an input
collection into a collection of
collections

• Useful for divide-and-
conquer algorithms

• Variants:
• Uniform
• Non-uniform
• Overlapping (read-only)

• Issues:
• How to deal with
boundary conditions?

• Partitioning does’t move
data, it just provides an
alternative “view” of its
organization

Examples: JPG and other
macroblock compression; divide-
and-conquer matrix multiplication;
coherency optimization for cone-
beam recon.

84

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Stencil • Stencil applies function to all
neighbourhoods of an array

• Neighbourhoods given by
set of relative offsets

• Optimized implementation
requires blocking and sliding
windows

• Boundary conditions on
array accesses need to be
considered

 Examples: image filtering including

convolution, median, anisotropic
diffusion; simulation including fluid
flow, electromagnetic, and financial
PDE solvers, lattice QCD

85

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Nesting: Recursive Composition

86

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

(Serial) Selection

f g

IF (c) {

 f

} ELSE {

 g

}

The condition is evaluated first,
then one of two tasks is executed
based on the result.

c

87

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Speculative Selection

SELECT (c) {

 f

} ELSE {

 g

}

• Effort in cancelled task “wasted”
• Use only when a computational
resource would otherwise be idle,
or tasks are on critical path

Both sides of a conditional and the
condition are evaluated in parallel,
then the unused branch is
cancelled.

f g

c

Examples: collision
culling; ray tracing;
clipping; discrete event
simulation;
search

88

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Recurrences • Recurrences arise from the
data dependency pattern
given by nested loop-carried
dependencies.

• nD recurrences can be
parallelized over n-1
dimensions by Lamport’s
hyperplane theorem

• Execution of parallel slices
can be performed either via
iterative map, wavefront
parallelism, or polyhedral
decomposition

f f f f

f f f f

f f f f

f f f f

Examples: infinite impulse response
filters; sequence alignment (Smith-
Waterman dynamic programming);
matrix factorization

89

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Partitioned (Blocked) Recurrences

• Implementation can
use partitioning for
higher performance

• When combined with
the “pipeline” pattern
recurrences implement
“wavefront”
computation.

• Polyhedral theory
generalizes this, can be
used to drive recursive
decompositions

f f f f

f f f f

f f f f

f f f f

90

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Scan • Scan computes all partial

reductions

• Allows parallelization of

many 1D recurrences

• Requires an associative

operator

• Requires 2n work over serial

execution, but lg n steps

Examples: integration,

sequential decision
simulations in financial
engineering, can also be
used to implement pack

f

f

f

f

f

f

f

f

f

f

f

91

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pipeline

• Tasks can be organized in chain with local state
• Useful for serially dependent tasks like codecs
• Whole chain applied like map to collection or stream
• Implementation of many sub-patterns may be optimized
for pipeline execution when inside this pattern

Examples: codecs with
variable-rate compression;
video processing; spam
filtering.

92

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pack
• Pack allows deletion
of elements from a
collection and
elimination of unused
space

• Useful when fused
with map and other
patterns to avoid
unnecessary output

Examples: narrow-phase
collision detection pair testing
(only want to report valid
collisions), peak detection for
template matching.

93

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Expand
• Expand allows
element of map
operation to insert
any number of
elements (including
none) into its output
stream

• Useful when fused
with map and other
patterns to support
variable-rate output

Examples: broad-phase collision
detection pair testing (want to
report potentially colliding
pairs); compression and
decompression.

94

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Search/Match

• Searching and matching
fundamental capabilities;
may depend indirectly on
sorting or hashing

• Use to select data for
another operation, by
creating a (virtual) collection
or partitioned collection.

• Example: category
reduction reduces all
elements in an array with
the same “label”, and is the
form used in Google’s map-
reduce

1 2 3 4 5 6 7

1 1

7 1

3 3

2 2

3 3

2 3

6 6

6 6

4 4

3 4

7 7

7 7

2 2

7 4

4 5

4 5

5 6

6 6

5 5

5 5

f

Examples: computation of
metrics on segmented regions
in vision; computation of web
analytics

95

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Gather

• Map + Random Read

– Read from a random (computed) location in an array

– When used inside a map or as a collective, becomes a
parallel operation

– Views into arrays, but no global pointers

– Write-after-read semantics for kernels to avoid races

August 18, 2008

A B C D E F G 1 5 0 2 2 4

B F A C C E

Examples: sparse matrix
operations; ray tracing;
proximity queries; collision
detection.

96

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

!Scatter

Map + Random Write

– Write into a random (computed) location in an array

– When used inside a map, becomes a parallel operation

– Race conditions possible when there are duplicate
write addresses (“collisions”)

– To obtain deterministic scatter, need a deterministic rule to
resolve collisions

C A ? F B 1 5 0 2 2 4

A B C D E F
Examples: marking pairs in

collision detection;
handling database update
transactions.

97

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

*Permutation Scatter

Option 1: Make collisions illegal

• Only guaranteed to work if no duplicate addresses

• Danger is that programmer will use it when addresses do in
fact have collisions, then will depend on undefined behaviour

• Similar safety issue as with out-of-bounds array accesses.

• Can test for collisions in “debug mode”

C A E D F B 1 5 0 2 3 4

A B C D E F Examples: FFT scrambling;
matrix/image transpose;
unpacking.

98

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

!Atomic Scatter

Option 2: Resolve collisions atomically but
non-deterministically

• Use of this pattern will result in non-deterministic programs

• Structured nature of rest of patterns makes it possible to test
for race conditions

C A D F B 1 5 0 2 2 4

A B C D E F

E

or

Examples: marking pairs in
collision detection;
computing set intersection
or union (used in text
databases)

99

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Merge Scatter

Option 3: Use an associative operator to combine values upon
collision

• Problem: as with reduce, depends on programmer to define
associative operator

• Gives non-deterministic read-modify-write when used
with non-associative operators

• Due to structured nature of other patterns, can still provide
tool to check for race conditions.

2 0 7 5 1 1 5 0 2 2 4

0 1 2 3 4 5 Examples: histogram;
mutual information and
entropy; database updates.

100

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Priority Scatter

Option 4: Assign every parallel element a priority

– NOTE: Need hierarchical structure of other patterns to do this

• Deterministically determine “winner” based on priority

• When converting from serial code, priority can be based on
original ordering, giving results consistent with serial program

• Efficient implementation is similar to hierarchical z-buffer...

C A E F B 1 5 0 2 2 4

A B C D E F

0 1 2 3 4 5

101

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Other Parallel Patterns

Fork-join: special case of nesting

Workpile: extension of map where tasks can be
added dynamically

Branch-and-bound: non-deterministic search
where other branches can be terminated once once
a “good enough” solution found

Incremental graph update: propagation of
updates through DAG or graph (latter may not
terminate, however…)

Graph rewriting: can be used to implement
functional languages.

Transactions: non-deterministic database updates

102

http://software.intel.com/en-us/articles/optimization-notice/

